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Cost Volume Pyramid Network with Multi-strategies Range
Searching

Abstract Multi-view stereo is an important research
task in computer vision while still keeping challeng-
ing. In recent years, deep learning-based methods have
shown superior performance on this task. Most of these
methods attempt to reconstruct cost volumes to esti-
mate the plausible depth hypotheses, which, however,
require large amount of memory and computation con-
sumption. Cost volume pyramid network–based meth-
ods which use the coarse-to-fine strategy to progres-
sively refine the depth in each cost volume computation
stage, have yielded promising results. However, these
methods fail to take fully consideration of the character-
istics of the cost volumes in each stage, leading to adopt
similar range search strategies for each cost volume
stage. In this work, we present a novel coarse-to-fine
deep learning based cost volume pyramid network for
multi-view stereo. Our proposed method, denoted by
multi-strategies cost volume pyramid multi-view stereo
network (MSCVP-MVSNet), combines different depth
sampling range estimation strategies for each cost vol-
ume stage and make use of multi-dimension uncer-
tainty without extra neural network modules. Further-
more, since the accuracy of the predicted depth map in
coarse-to-fine framework is highly dependent on initial
low-resolution depth map before refinement, we utilize
probability distribution of each pixel as supervision of
the initial cost volume to further improve the initial
depth estimation. We conducted extensive experiments
on both DTU and BlendedMVS datasets, and results
show that our method outperforms most state-of-the-
art methods.

Keywords Multi-view stereo · 3D reconstruction ·
Cost volume · Coarse-to-fine

Fig. 1: Our deep MVS method uses different depth sam-
pling range searching strategies in each stage of pyramid
during training and evaluation.

1 Introduction

Multi-view stereo is one of the fundamental computer
vision tasks which is widely used in augmented real-
ity, 3D modeling and autonomous driving. Given a se-
ries of images captured from different views, multi-view
stereo aims at reconstructing 3D model of the target by
leveraging geometry and photometric information. Tra-
ditional methods rely on hand-crafted features and met-
rics for multi-view stereo matching, but they encounter
difficulties in handling non-Lambertian and weakly tex-
tured surfaces.

In deep learning era, deep CNNs used for cost regu-
larization and extracting representative image features
have achieved promising performance. Yao et al. [2] first
proposed an end-to-end MVS pipeline that constructs
cost volume based on plane sweeping algorithm and ag-
gregates different views by minimizing differential vari-
ance. However, this method consumes huge memory be-
cause that 3D CNN used for regularization is cubically
proportional to image resolution. As a result, subse-
quent methods like [2,3] downsample high resolution
images to regularize cost volume in a smaller resolution.
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To this end, methods designed in coarse-to-fine manner
[7–10] are proposed, which iteratively refine depth map
based on cost volume pyramid and consume less mem-
ory. In coarse-to-fine structure like [9], the entire depth
range is uniformly sampled in the first stage to infer
a coarsest depth map, and the estimated depth map is
iteratively upsampled to a higher resolution and refined
in a small depth range.

However, current coarse-to-fine methods suffer from
two limitations. First, the accuracy of the predicted
depth map is highly dependent on the initial low-
resolution depth map, since it is difficult to correct the
depth of ill-posed and occluded pixels in the following
narrow range. Second, current coarse-to-fine methods
use same searching strategies in refinement stages af-
ter gaining initial depth map, which, however, not fully
considered the characteristics of the cost volumes in
each stage. For example, CVP-MVSNet [9] constructs
cost volume with same depth searching strategy fol-
lowed by weights-shared 3D convolution network. By
back projecting neighboring pixels on epipolar line, this
method leverages contextual information to determine
depth searching range in next stage. AACVP-MVSNet
[11] introduces a self-attention mechanism to feature
extraction module in CVP-MVSNet [9] framework but
still retains the same residual depth searching stragt-
egy. Cas-MVSNet [10] narrows depth range of each
stage by hand-crafted range with specific decay ra-
tio, and leverages a non-parameter-sharing cost volume
regularization network. CFNet [18] uses an adaptive
variance-based disparity range uncertainty estimation
for stereo matching, to generate cascade cost volume
while keeping the same searching method over three
stages pyramid.

All these coarse-to-fine methods mentioned above
uses shared depth hypothesis generating strategies
in refinement stages, leading to the errors in coarse
depth maps propagated into finer depth maps. In this
work, we propose a multi-strategies cost volume pyra-
mid multi-view stereo network (MSCVP-MVSNet). In-
stead of single depth range searching strategy, we uti-
lize multi-dimensional information to calculate depth
searching range for each layer. To further utilize the
information contained in the cost volume, we intro-
duce unimodal distribution as a training label at second
stage during the training process.

Our main contributions can be summarized as fol-
lows:

We present multiple depth range searching meth-
ods in different stages of pyramid structure, leveraging
multi-dimension information. For the second stage of
the pyramid, we mine information in probability dis-
tribution of each pixel to adaptively determine depth

searching range, while for the succeeding refinement
stages, we leverage neighboring depth information to
refine high resolution depth map in a narrow range it-
eratively.

To further exploit information in cost volume of
deep MVS, we propose unimodal assumption as a train-
ing label in second stage and obtain a more accurate
low-resolution depth map before iteratively refinement.

Quantitative results show that our method obtains
SOTA results on DTU dataset and satisfactory quali-
tative results on BlendedMVS.

2 Related Work

2.1 Coarse-to-fine MVS methods.

Deep MVS methods [3,4] based on pipeline of MVSNet
[2] build cost volume at the resolution of output images,
which usually occupy large memory dealing with high
resolution dataset such as DTU [5] or Tanks and Tem-
ples [6]. In order to solve this problem, researchers pro-
pose coarse-to-fine reconstruction pipeline, which first
downsample input images to build a low resolution
cost volume and then perform subsequent refinement
to obtain a high-resolution depth map. Chen et al. pro-
posed Point-MVSNet [7] which estimates a coarse depth
map, back project it into a point cloud and then refine
the point cloud iteratively. Fast-MVSNet [8] also infers
depth map in a low resolution, which simply uses depth
propagation and Gauss-Newton refinement to obtain
high-resolution depth map, taking into account speed
and accuracy. CVP-MVSNet [9] and Cascade-MVSNet
[10] both construct cost volume pyramid in a coarse-to-
fine manner. They build cost volume across the entire
depth-range in the coarsest resolution, after that they
search in the neighbor of the current depth estimation
to construct a partial cost volume at higher resolution
levels. Based on these works [9,10], Yu et al [11] propose
AACVP-MVSNet, which introduces attention mecha-
nism to CVP-MVSNet [9] framework. Zhang et al. [12]
took into account the visibility between different views
based on Cascade-MVSNet [10].

2.2 Depth sampling range.

Coarse-to-fine pyramid networks uniformly sample the
entire depth range in the first stage. In the following
stage, they iteratively narrow depth searching range by
various strategies and sample depth hypothesis in this
range. CVP-MVSNet [9] determines the local sampling
range around the current depth by back projecting the
corresponding pixels along epipolar line in source views.
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Cas-MVSNet [10] narrows sampling range of each stage
by hand-crafted range with specific decay ratio. For
the first time, Cheng et al. [16] utilized variance of
probability distribution to describe the uncertainty of
depth estimation. Mao et al. [17] proposed uncertainty
distribution-guided range prediction module to exca-
vate multi-dimension information.

All these methods mentioned above employ identi-
cal sampling range searching strategies in each stage
of three- or four-layer pyramid. CVP-MVSNet [9] takes
advantage of neighbouring depth estimation but only
uses the expectation of the probability distribution of
each pixel. UCSNet [16] leverages variance of probabil-
ity distribution but ignore the neighbouring informa-
tion. In order to leverage both variance and neighbour-
ing contextual information without adding complicated
neural network modules, we apply different sampling
range calculation strategies in different stage of coarse-
to-fine MVS framework.

2.3 Cost volume.

Recently, cost volume is widely used in MVS and stereo
matching methods. MVSNet [2] first introduces cost
volume for end-to-end MVS pipeline by calculating pho-
tometric matching cost of each pixel in different fronto-
parallel planes hypothesis. A standard cost volume has
a resolution of H × W × D × F , where H, W , D, F

are height, width, number of plane hypothesis and fea-
ture channels, respectively. While cost volume indicates
matching cost of each depth hypothesis of each pixel in-
tuitively, it is regularized by 3D UNet to generate an
estimated probability value and indirectly supervised
as an intermediate layer. In order to integrate multi-
scale information of cost volume, Shen et al. [18] pro-
posed cost volume fusion module to obtain better initial
disparity map. Like CFNet [18], we further utilize cost
volume to obtain better initial depth map before refine-
ment. To achieve this, we modified adaptive unimodal
filter proposed by Zhang et al. [13] to our coarse-to-fine
framework.

3 Methods

3.1 Overview

In this section,we introduce our multi-strategies cost
volume pyramid network for high-resolution MVS re-
construction in details. The overview of the network is
shown in Fig. 2. We assume the input reference image
denoted by I0 ∈ RH×W , and source images represented

by {Ii}N−1
i=1 . To build a pyramidal structure, we down-

sample input images L times to obtain images pyra-
mid {Iji }Lj=1, where i ∈ {0, 1, · · · , N}. Feature pyramid
{F j

i }Lj=1 are build by weights-shared feature extraction
module.

As shown in Fig. 2, we apply three different strate-
gies in each stage to determine depth sampling ranges in
our framework. We use two non-parameter-sharing UN-
ets to regularize cost volume with different depth sam-
pling numbers. Since depth hypothesis sampling strat-
egy 3 (DHS-3) is neural-network-parameters-free, we
can build arbitrary number of layers during evaluation,
even if we only train a three-layer pyramid. In order to
obtain a higher quality low-resolution depth map, we
apply adaptive unimodal filtering to put constrains on
cost volume in second stage of our coarse-to-fine frame-
work.

Inspired by GwcNet [14], we build cost volume by
group-wise correlation instead of calculating feature
volume variance over all views proposed by Yao et al.
[2].

3.2 Depth sampling range estimation

As introduced in related work, previous methods ([9],
[18], [11]) employ single strategy in each stage to calcu-
late depth range, which either ignore statistical prop-
erties of each pixel or neighbouring information. How-
ever, if we apply additional neural network modules to
estimate multi-dimensional uncertainty range on each
layer, it will consume more memory and increase the
computational complexity. To solve this, we fuse multi-
dimensional information by simply combine different
uncertainty estimation strategies in different stage and
achieve satisfactory results.

In this section, we present our depth hypothesis
sampling strategies in details. As shown in Fig. 1, the
number of pyramid layers in our framework is flexible,
we train 3 different layers while evaluate with arbitrary
number of stages.

In the first stage, we uniformly sampled depth hy-
pothesis over the entire range to obtain a coarsest initial
depth map. Due to the large sampling range, we sam-
pled more depth hypothesis (D1 = 48) in this stage.

For second stage, we take advantage of probability
distributions to calculate specific depth sampling range
of each pixel. Previous methods ([13], [18]) indicate that
texture-less and occluded pixels tend to have multiple
or wrong matches. In this case, the expectation of the
per-pixel distributions can not depict the properties of
multimodality and dispersion. To solve this issue, we
leverage the variance of the probability distribution as
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Fig. 2: The network structure of MSCVP-MVSNet. The feature volume pyramid is constructed by a weighted-
shared feature-extraction module. In each stage, we estimate uncertainty of each pixel as the depth sampling range
of next stage. We apply whole depth range searching in first stage. For second stage, we apply adaptive variance-
based range searching method to determine sampling range. From the thrid stage, we back-project neighboring
pixels to find depth hypothesis sampling range.

well as adaptive unimodal constraints (Sec. 3.3) to esti-
mate per-pixel uncertainty and reduce local maxima of
probabilities. We set the number of depth hypothesis,
D2 = 32 in this stage. For stage l, the variance at pixel
i is defined as:

V̂ l
i =

Dl∑
j=1

P l
i,j(d

l
i,j − d̂li)

2, (1)

where P l
i,j is the probability of pixel i at sampled depth

j,dli,j is the depth of sampled plane j, d̂li is the estimated
depth of pixel i at current stage. Different from UCSNet
[16], we adopt the idea of CFNet[18] that originally
proposed in stereo matching task, which use learned
instead of hand-crafted scale parameters to determine
confidence interval:

dl+1
max(i) = d̂li + αl

√
V̂ l
i + βl,

dl+1
min(i) = d̂li − αl

√
V̂ l
i − βl,

(2)

where αl and βl are learned parameters in stage l. Same
as CFNet [18], we initial αl and βl as 0 at the be-
ginning of training. In texture-less regions with multi-
modal distributions, the variances tend to be large, and

adaptive uncertainty range estimation algorithm adjust
depth hypothesis to a larger range so as not to miss the
truth depth value before small-range refinement. Since
we only use this strategy in second stage, l = 2 in Eq.
(1) and Eq. (2)

Our first two layers have yielded fair results at the
low resolution stage, and the depth values of high-
resolution depth maps are obtained via upsampling op-
eration. To refine the depth values of the high-resolution
depth maps, it is necessary to re-calculate the depth
values in a small range from the third stage. Specifi-
cally, we apply neural-network-parameters-free method
to determine sampling range, which take advantage of
contextual information provided by neighboring pixels
along epipolar line. Like CVP-MVSNet [9], we calculate
depth sapmling range by back projecting neighboring
pixels which is 0.5 pixels away along the epipolar line.

3.3 Supervise on Cost Volume

We further utilize the information in cost volume at
2nd stage to obtain better low-resolution depth map.
To avoid increasing the computing time and complexity
during evaluation, we modified adaptive unimodal filter
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Fig. 3: Adaptive unimodal filtering.

proposed by Zhang et al. [13], which is only activated
during training to constrain the cost volume.

Cost volume is defined to reflect the similarity be-
tween different views, where the true depth value should
have the lowest cost, which means the probability dis-
tribution should be unimodal and peaked at the true
depth hypothesis under ideal circumstances. Based on
this assumption, we construct unimodal distributions as
reference distributions which directly constraint on the
cost volume to reduce errors introduced by multi-modal
distributions. Following [13], we defined reference uni-
modal distribution as:

P l(i) = softmax(−
|dl(i)− dlgt(i)|

σi
), (3)

where σi is variance of reference distribution for pixel
i, which controls the sharpness of peak and it is defined
as:

σl
i = αl

c(1− f l
i ) + βl

c, (4)

where f l
i is confidence value of pixel i in stage l. We

estimate confidence value for each pixel by a 2D con-
fidence estimation network. αl

c and βl
c are scale factor

and lower bound, respectively. Different from [13], we
use learned neural network parameters instead of hand-
crafted factors to adapt different properties of proba-
bility distributions for different datasets. Large σ indi-
cates low confidence of pixel, which usually caused by
mismatch in textureless regions.

We leverage stereo focal loss proposed by AcfNet
[13] to guide network to generate unimodal distribu-
tions for each pixel. The stereo focal loss is defined as:

LSF =
1

|P|
∑
i∈P

(

D−1∑
d=0

(1− Pi(d))
−γ · (−Pi(d) · logP̂i(d))),

(5)

where Pi(d) is probability value of reference unimodal
distribution at depth d of pixel i, and P̂i(d) is estimated
probability of pixel i at depth d given by our UNet.

Fig. 4: Probability distributions of two pixels with and
without our adaptive unimodal filtering. The first and
third rows show the probability distributions of two pix-
els in stage 2 without adaptive unimodal filtering. The
second and fourth rows are corresponding distributions
after adaptive unimodal filtering. The estimated and
ground-truth depth values are indicated by the vertical
dashed lines in red and blue respectively. The errors
between the estimated and ground-truth depth values
are marked by the green horizontal line.

Instead of simple cross entropy loss, we set γ ≥ 0 to
force unimodal guidance to focus on high-confidence
regions.

As shown in Fig. 4, after adaptive unimodal fil-
tering (AUF module), some local maximas are elimi-
nated, and the errors in stage 2 are decreased. Different
from [13] which construct cost volume in a fixed reso-
lution, we apply this filter in coarse-to-fine framework,
which constructs more than one cost volume during the
whole process. We apply adaptive unimodal filter only
in 2nd stage instead of each stage of our pyramid. There
are two reasons for this, firstly, appling AUF module
for each stage consumes more time and computing re-
source. Second, for stages with small sampling numbers
D, it is difficult to fit their distributions to unimodal
distributions.



6

3.4 Loss Function

Our total loss consists of three parts: regression loss in
each stage, stereo focal loss and confidence loss, which
is denoted as:

L =λSFLSF + λCLC

+

L∑
l=1

ωlLl
regression

(6)

Where λSF and λC are two factors to balance stereo
focal loss and confidence loss on second stage. The con-
fidence loss LC is defined as:

LC =
1

|P|
∑
i∈P

−logfi (7)

We apply negative log-likelihood function as confidence
loss to encourage confidence estimation network to pre-
dict high confidence values for each pixel.

Regression loss Ll
regression is defined to reflect

the difference between the predicted depth map and
ground-truth at stage l. We use hand-crafted weight ω

at each stage. For stage l, the L1 norm is defined as:

Ll
regression =

∑
i∈P

∥dli − d̂li∥1 (8)

4 Experiment

4.1 Dataset

DTU Dataset. We train and evaluate our network on
DTU dataset [5] to obtain quantitative results. DTU
dataset [5] consists of 124 large scale of scenes in 49 or
64 different views and 7 different light conditions, with
the evaluation reference obtained by a structured light
scanner. We use the same splited training and evalua-
tion sets with [3,9,11]. While the original size of eval-
uation image is 1600× 1200, we crop it to 1600× 1184

to fit the upsample process.
BlendedMVS. BlendedMVS [22] is a collection

of images captured from different views of 113 var-
ious scenarios. It contains 17K training samples in
low-resolution (768 × 576) as well as high-resolution
(2048×1536). Following the official training and valida-
tion list given by the released dataset files, we divided
106 scenes for training and the other 7 for validation.
We choose low-resolution BlendedMVS for our training
set and evaluate our method on both low-resolution and
high-resolution datasets.

Fig. 5: Convergence on BlendedMVS dataset.

4.2 Implementation details

Training. We train and evaluate our model on DTU
dataset and low-resolution BlendedMVS. As stated
above, we construct a 3-layers pyramid during training,
and applying whole range sampling, adaptive variance-
based sampling and neighboring back-projection sam-
pling on 1st, 2nd, and 3rd stage, respectively. For
first stage, we uniformly sample the whole depth range
[425, 1065] with D1 = 48, while for 2nd and 3rd stage,
we choose D2 = 32 and D3 = 8, respectively. As the
training process with high-resolution inputs is memory
and time consuming, we downsample the training set
into a size of 320 × 256, and the coarsest resolution
is 40 × 32 in the first stage. We set hyperparameters
λSF = 10, λC = 80 in equation (6). We set ω1 = 0.5,
ω2 = 1 and ω3 = 2 to balance L1 loss in each stage.
As for the reference unimodal distribution, we initialize
the neural network parameters as α2

c = 13 and β2
c = 9

based on empirical evidence from [13]. We use 3 differ-
ent views as inputs and Adam [19] as optimizer in the
training stage of the proposed network. We set batch
size as 16 and train our model on 2 Nvidia GeForce
RTX 3090 for 40 epoches with initial learning rate 0.001
multiplied by 0.5 at 10th, 12th, 14th, 20th epoch.

Evaluation. For DTU dataset,we crop the original
images to 1600× 1184 for evaluation. We set L = 5 for
image feature pyramid to maintain a similar size with
training stage at the coarsest stage (50 × 37). Similar
to [2,3,9], we choose 5 views in evaluation for fair com-
parison. We set the same sampling numbers D in each
stage as training process. As for BlendedMVS, we eval-
uate our proposed method on both low-resolution and
high-resolution dataset.
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Fig. 6: 3D models constructed by CVP-MVSNet [9], AACVP-MVSNet [11] and our method on DTU dataset.

Post processing and Metrics. After estimating
the depth map, we fuse all views into a dense point
cloud model for each scene. For fair comparison, we
follow the common post processing method used by [2,
3,9], which is a fusion method provided by Galliani et
al. [20]. We run the official evaluation code provided by
DTU dataset [5] to obtain quantitative results in terms
of mean accuracy (acc.), mean completeness (com.) and
overall score (overall). The evaluation results are listed
in Tab. 1.

4.3 Results on DTU dataset

We train and evaluate our method on DTU dataset to
conduct quantitative results in comparison with with
other learning based methods. As shown in Tab. 1, our
method achieves state-of-the-art results in overall score,
which is comparable to PVSNet [21]. Especially, our
method outperforms all methods in Tab. 1 in terms of
completeness. As shown in Fig. 6, We visualize several
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Table 1: Quantitative results on DTU dataset
Methods acc.(mm) comp.(mm) overall(mm)
MVSNet[2] 0.396 0.527 0.462
R-MVSNet[3] 0.383 0.452 0.418
MVSCRF[4] 0.371 0.426 0.398
PointMVSNet[7] 0.361 0.421 0.391
CVP-MVSNet[9] 0.296 0.406 0.351
AACVP-MVSNet[11] 0.357 0.326 0.341
Vis-MVSNet[12] 0.369 0.361 0.365
USCNet[16] 0.338 0.349 0.344
PVSNet[21] 0.337 0.315 0.326
Ours 0.379 0.278 0.328
Note: We evaluate our model on DTU dataset in original image
resolution and compare it with other methods. Quantitative
results show that our network achieves best performance on
completeness. (lower is better)

Fig. 7: Convergence of different training resolution.

reconstructed 3D models constructed by CVP-MVSNet
[9], AACVP-MVSNet [11] and our proposed method.

4.4 Results on BlendedMVS

As stated above, we train our modal on low-resolution
sets and evaluate it on both low- and high- resolu-
tion sets of BlendedMVS. Fig. 5 shows convergence of
our model on BlendedMVS dataset. As BlendedMVS
dataset does not provide any reference point clouds for
quantitative evaluation, we conduct the visual compar-
ison with CVP-MVSNet [9]. We set L = 3 in training
process. During evalution, we set L = 5 and L = 6

for low and high resolution evaluation sets, respec-
tively. The reconstruction results of low-resolution sets
are shown in Fig. 8. We can clearly see that our ap-

proach is better than CVP-MVSNet [9] in complete-
ness. To demonstrate the ability of our method to recon-
struct large scenes in high resolution, we evaluate our
method on several scenes of high-resolution Blended-
MVS dataset. In the same way, we compare our method
with CVP-MVSNet [9] and the results of high-resoluion
dataset are shown in Fig. 9. On high-resolution data
sets, the superiority of our method in terms of com-
pleteness is even more evident.

4.5 Ablation study

In this section, we perform ablation experiments on
DTU dataset to validate the effectiveness of each com-
ponent of our proposed network. Results are shown in
Tab. 2. Below we analyse each component in details.

• Non-parameter-sharing UNet. 3D UNet is de-

signed for cost volume regularisation and explore cost

volume information in three dimensions. We replace

our two separated UNets in proposed model with a

parameter-sharing UNet (denoted as CVP-MS-Auf in

Tab. 2). Quantitative results on DTU dataset show that

our two parameter-separating UNets gain better results

(0.328 vs.0.360) than parameter-sharing UNet. This in-

dicates that former stages which search in a wider range

have different characteristics with refinement stages in

the cost volume regularization process.

• Depth range estimation strategies. We

choose CVP-MVSNet [9] which apply epipolar line-

based range estimation at each stage as baseline model.

Although simply applying the proposed depth sampling

range estimation strategy does not give a better result

(CVP-MS in Tab. 2), we demonstrate that our recon-

struction results are significantly improved when com-

bining the proposed searching strategy with two non-

parameter-sharing UNets.

• Supervise on cost volume. While our multi-

strategies with two non-parameter-sharing UNet frame-

work has achieve promising results (CVP-MS-U2Net

in Tab. 2), we obtain even better results when further

adding adaptive unimodal filtering on 2nd stage, which
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Fig. 8: Results on low-res BlendedMVS, compared with CVP-MVSNet [9].

Table 2: Ablation study on DTU dataset
Methods Variance range Epipolar line range U2Net Auf acc.(mm) comp.(mm) overall(mm)
CVP(baseline) # ! # # 0.313 0.394 0.354
CVP-MS ! ! # # 0.343 0.439 0.391
CVP-U2Net # ! ! # 0.330 0.379 0.355
CVP-MS-Auf ! ! # ! 0.321 0.398 0.360
CVP-MS-U2Net ! ! ! # 0.389 0.279 0.334
Ours ! ! ! ! 0.379 0.278 0.328
Note: Our baseline model, denoted as CVP, is CVP-MVSNet [9] with epipolar line-based range searching. CVP-MS de-
notes multi-strategies which combines baseline model with variance-based range searching. U2Net indicates two parameter-
separated UNets, while our baseline uses one parameter-sharing UNet. Auf denotes adaptive unimodal filtering in 2nd
stage.

is our final model (the last row of Tab. 2). Interest-

ingly, quantitative results of CVP-MS-Auf and CVP-

MS in Tab. 2 show that adaptive unimodal filtering

gives a greater boost when parameter-sharing UNet is

adopted.

• Image resolution during training and eval-

uation. Fig. 7 shows convergence of different resolu-

tions on DTU dataset during training. “40 × 32” and

“20×16” denote different coarsest resolution of pyramid

in training process. As it is shown in Fig. 7, although

both of them are converging, the final loss of higher res-
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Fig. 9: Results on high-res BlendedMVS, compared with CVP-MVSNet [9]
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Table 3: Quantitative results on DTU dataset with different training and evaluation resolution.
Coarsest ResT Coarsest ResE LevelsE acc.(mm) comp.(mm) overall(mm) mem.(M) runtime(s)

40× 32 25× 18 6 0.372 0.292 0.332 6809 2.543
20× 16 25× 18 6 0.382 0.324 0.353
40× 32 50× 37 5 0.379 0.278 0.328 7863 2.550
20× 16 50× 37 5 0.371 0.328 0.349
40× 32 100× 74 4 0.360 0.311 0.335 6935 2.483
20× 16 100× 74 4 0.349 0.478 0.413
40× 32 200× 148 3 0.375 0.530 0.452 7861 2.366
20× 16 200× 148 3 0.531 1.959 1.245

Note: Quantitative results on DTU dataset with different training and evaluation resolution. Coarsest ResT and Coarsest
ResE denote the coarsest image resolution in the pyramid during training and evaluation, respectively. LevelsE means the
number of pyramid layers during evaluation.

olution is smaller. Tab. 3 shows that the performance

of the model trained with higher resolution input is

better than that with lower resolution input. This is

probably due to high-resolution images contain more

discriminative features that are helpful for high-quality

reconstruction.

To discover the relationship between pyramid lev-

els and quality of output depth map, we also evaluate

our method with different pyramid levels (the minimum

level is 3) on DTU dataset. As shown in Tab. 3, we

achieve the best overall score with 5 pyramid stages in

evaluation process.

5 Conclusion

In this paper, we present an efficient deep-learning

based cost volume pyramid network for MVS. By com-

bining different sampling range estimation strategies for

each stage, we integrate multi-dimensional information

without additional neural network modules. Then, we

apply adaptive unimodal filters to further improve the

low-resolution depth map before refinement, and proves

its effectivenes in coarse-to-fine cost volume pyramid

framework. Results on different datasets show the ef-

fectiveness and generalisability of our method.
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